
in delphi code create a shape component that contains a label where text can be displayed. It is to
create the text bubbles in a text messaging app

To create a custom component in Delphi that combines a shape and a label to mimic the

appearance of a text bubble in a messaging app, you'd typically inherit from an existing

component (like TPanel or TCustomControl) and then override its painting methods and add

the desired functionality.

Here's a basic example:

1. Start with a new package:

o Open Delphi.

o Click File -> New -> Package.

o Save the package as BubblePackage.dpk.

2. Add a new component:

o In the package, click File -> New -> Component.

o Set the ancestor type as TCustomControl.

o Name it TBubbleText.

o Save it as BubbleText.pas.

3. Code for the TBubbleText component:

delphi

unit BubbleText;

interface

uses

 System.Classes, Vcl.Controls, Vcl.StdCtrls, Vcl.Graphics, System.Types,

System.UITypes;

type

 TBubbleText = class(TCustomControl)

 private

 FLabel: TLabel;

 procedure SetText(const Value: string);

 function GetText: string;

 protected

 procedure Paint; override;

 procedure Resize; override;

 public

 constructor Create(AOwner: TComponent); override;

 destructor Destroy; override;

 published

 property Text: string read GetText write SetText;

 property Color;

 property Font;

 property Align;

 property Anchors;

 property Constraints;

 property Visible;

 end;

procedure Register;

implementation

procedure Register;

begin

 RegisterComponents('Samples', [TBubbleText]);

end;

{ TBubbleText }

constructor TBubbleText.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 Width := 150;

 Height := 50;

 FLabel := TLabel.Create(Self);

 FLabel.Parent := Self;

 FLabel.AutoSize := False;

 FLabel.WordWrap := True;

 FLabel.Align := alClient;

 FLabel.Layout := tlCenter;

 FLabel.Transparent := True;

end;

destructor TBubbleText.Destroy;

begin

 FLabel.Free;

 inherited;

end;

function TBubbleText.GetText: string;

begin

 Result := FLabel.Caption;

end;

procedure TBubbleText.Paint;

var

 Rect: TRectF;

begin

 inherited;

 Canvas.Pen.Color := Color;

 Canvas.Brush.Color := Color;

 Rect := RectF(0, 0, Width, Height);

 // Drawing the rounded rectangle as the bubble shape

 Canvas.RoundRect(Rect, 15, 15);

end;

procedure TBubbleText.Resize;

begin

 inherited;

 Invalidate; // Redraw on resize

end;

procedure TBubbleText.SetText(const Value: string);

begin

 FLabel.Caption := Value;

end;

end.

4. Compile and Install:

o Add the component to the package by right-clicking the package in the Project

Manager, selecting Add, and then choosing BubbleText.pas.

o Right-click the package in the Project Manager and choose Compile.

o Right-click the package again and choose Install.

After you've completed the above steps, the new TBubbleText component should appear in

the tool palette under the "Samples" category. You can then drag and drop it onto your forms

and set the Text property to display messages in the bubble. Adjust the appearance (colors,

fonts, etc.) as required.

Can you add a property that sets whether the bubble is for what the user has typed or for the

other end. Based on this reduce the size of drawn rect so that for the text that the user has

typed the rect is left justified and for the other end it is right justified.

Sure! I'll add a property named BubbleType which can either be btUser or btOther.

Depending on the value of this property, the bubble will be drawn either left justified or right

justified.

Here's the modified code:

delphi

unit BubbleText;

interface

uses

 System.Classes, Vcl.Controls, Vcl.StdCtrls, Vcl.Graphics, System.Types,

System.UITypes;

type

 TBubbleType = (btUser, btOther);

 TBubbleText = class(TCustomControl)

 private

 FLabel: TLabel;

 FBubbleType: TBubbleType;

 procedure SetText(const Value: string);

 function GetText: string;

 procedure SetBubbleType(const Value: TBubbleType);

 protected

 procedure Paint; override;

 procedure Resize; override;

 public

 constructor Create(AOwner: TComponent); override;

 destructor Destroy; override;

 published

 property Text: string read GetText write SetText;

 property BubbleType: TBubbleType read FBubbleType write SetBubbleType

default btUser;

 property Color;

 property Font;

 property Align;

 property Anchors;

 property Constraints;

 property Visible;

 end;

procedure Register;

implementation

procedure Register;

begin

 RegisterComponents('Samples', [TBubbleText]);

end;

{ TBubbleText }

constructor TBubbleText.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 Width := 150;

 Height := 50;

 FLabel := TLabel.Create(Self);

 FLabel.Parent := Self;

 FLabel.AutoSize := False;

 FLabel.WordWrap := True;

 FLabel.Align := alClient;

 FLabel.Layout := tlCenter;

 FLabel.Transparent := True;

 FBubbleType := btUser; // Default type

end;

destructor TBubbleText.Destroy;

begin

 FLabel.Free;

 inherited;

end;

function TBubbleText.GetText: string;

begin

 Result := FLabel.Caption;

end;

procedure TBubbleText.Paint;

var

 Rect: TRectF;

begin

 inherited;

 Canvas.Pen.Color := Color;

 Canvas.Brush.Color := Color;

 case FBubbleType of

 btUser:

 begin

 Rect := RectF(0, 0, Width * 0.75, Height);

 end;

 btOther:

 begin

 Rect := RectF(Width * 0.25, 0, Width, Height);

 end;

 end;

 // Drawing the rounded rectangle as the bubble shape

 Canvas.RoundRect(Rect, 15, 15);

end;

procedure TBubbleText.Resize;

begin

 inherited;

 Invalidate; // Redraw on resize

end;

procedure TBubbleText.SetBubbleType(const Value: TBubbleType);

begin

 if FBubbleType <> Value then

 begin

 FBubbleType := Value;

 Invalidate; // Redraw when BubbleType changes

 end;

end;

procedure TBubbleText.SetText(const Value: string);

begin

 FLabel.Caption := Value;

end;

end.

In this version:

• I've added the TBubbleType enumerated type to represent the two kinds of bubbles.

• The BubbleType property was added to the TBubbleText component. This property

determines how the bubble will be drawn.

• The Paint method has been updated to conditionally set the Rect value based on the

BubbleType.

When you use this component on a form, you can set the BubbleType property to btUser or

btOther to control the appearance of the bubble. The bubble will be left justified for btUser

and right justified for btOther.

Is the text contained in the adjusted rect now?

Oops! My apologies for missing that detail. When we adjust the rect for the bubble drawing,

we should also adjust the label's position and width accordingly to ensure that the text is

contained within the bubble.

I'll modify the code to handle the label's position and dimensions according to the

BubbleType:

delphi

procedure TBubbleText.Paint;

var

 Rect: TRectF;

begin

 inherited;

 Canvas.Pen.Color := Color;

 Canvas.Brush.Color := Color;

 case FBubbleType of

 btUser:

 begin

 Rect := RectF(0, 0, Width * 0.75, Height);

 FLabel.SetBounds(5, 0, Trunc(Width * 0.75) - 10, Height);

 end;

 btOther:

 begin

 Rect := RectF(Width * 0.25, 0, Width, Height);

 FLabel.SetBounds(Trunc(Width * 0.25) + 5, 0, Trunc(Width * 0.75) -

10, Height);

 end;

 end;

 // Drawing the rounded rectangle as the bubble shape

 Canvas.RoundRect(Rect, 15, 15);

end;

procedure TBubbleText.SetBubbleType(const Value: TBubbleType);

begin

 if FBubbleType <> Value then

 begin

 FBubbleType := Value;

 Invalidate; // Redraw when BubbleType changes

 end;

end;

Now, within the adjusted Rect, I've set the bounds of the FLabel to make sure the text it

displays is contained within the bubble's rectangle. The values 5 and -10 are for padding

inside the bubble. Adjust those values if you need more or less padding.

I want the box to resize based on the amount of text in the Text property

Alright, I understand now. We'll make the bubble size adapt dynamically based on the

content of the text property, ensuring it fits the text well. Here's how you can achieve this:

1. Adjust the size based on the text: You can use the Canvas.TextWidth and

Canvas.TextHeight methods to measure the dimensions of the text and adjust the

control's dimensions accordingly.

2. Set the minimum and maximum widths: To ensure the bubble doesn't become too

thin or too wide, you can define a minimum and maximum width for the bubble.

Here's the modified code:

delphi

// ... [rest of the code]

const

 MIN_BUBBLE_WIDTH = 100;

 MAX_BUBBLE_WIDTH = 250;

 PADDING = 10;

{ TBubbleText }

// ... [rest of the code]

procedure TBubbleText.ResizeBubble;

var

 TextWidth, TextHeight: Integer;

 NewWidth, NewHeight: Integer;

begin

 Canvas.Font.Assign(Font);

 TextWidth := Canvas.TextWidth(FLabel.Caption);

 TextHeight := Canvas.TextHeight(FLabel.Caption);

 NewWidth := TextWidth + 2 * PADDING;

 NewHeight := TextHeight + 2 * PADDING;

 if NewWidth < MIN_BUBBLE_WIDTH then

 NewWidth := MIN_BUBBLE_WIDTH

 else if NewWidth > MAX_BUBBLE_WIDTH then

 NewWidth := MAX_BUBBLE_WIDTH;

 Width := NewWidth;

 Height := NewHeight;

end;

procedure TBubbleText.SetText(const Value: string);

begin

 FLabel.Caption := Value;

 ResizeBubble;

 Invalidate;

end;

// ... [rest of the code]

The ResizeBubble method calculates the new width and height for the bubble based on the

text's dimensions. The SetText method (setter for the Text property) has been modified to

call ResizeBubble after updating the label's caption.

Note that the maximum and minimum widths (MAX_BUBBLE_WIDTH and MIN_BUBBLE_WIDTH)

are arbitrary values. Adjust these constants as needed for your specific use case. The PADDING

constant provides a buffer space around the text inside the bubble. You can adjust this too as

per your requirements.

Does Canvas.TextHeight handle multiple lines of text?

No, Canvas.TextHeight does not handle multiple lines of text. It returns the height for a

single line of text based on the currently selected font.

If you have a multi-line string and you want to calculate its height, you'll have to break the

string into individual lines and sum up the heights for all lines. However, if you're using a

TLabel, it's a bit more nuanced since TLabel handles word wrapping for you.

A more robust way to determine the height of multi-line text, especially in the context of the

TLabel control, is to use the DrawText function with the DT_CALCRECT flag. This won't

actually draw the text but will instead calculate the rectangle that the text would occupy.

Here's a function to calculate the height of multi-line text:

delphi

function CalculateTextHeight(const ACanvas: TCanvas; const Text: string;

MaxWidth: Integer): Integer;

var

 Rect: TRect;

begin

 Rect := Rect(0, 0, MaxWidth, 0);

 DrawText(ACanvas.Handle, PChar(Text), -1, Rect, DT_WORDBREAK or

DT_CALCRECT or DT_LEFT);

 Result := Rect.Bottom;

end;

You can use this function in the ResizeBubble procedure to correctly handle multi-line text:

delphi

procedure TBubbleText.ResizeBubble;

var

 TextWidth, TextHeight: Integer;

 NewWidth, NewHeight: Integer;

begin

 Canvas.Font.Assign(Font);

 TextWidth := Canvas.TextWidth(FLabel.Caption);

 TextHeight := CalculateTextHeight(Canvas, FLabel.Caption,

MAX_BUBBLE_WIDTH - 2 * PADDING);

 NewWidth := TextWidth + 2 * PADDING;

 NewHeight := TextHeight + 2 * PADDING;

 if NewWidth < MIN_BUBBLE_WIDTH then

 NewWidth := MIN_BUBBLE_WIDTH

 else if NewWidth > MAX_BUBBLE_WIDTH then

 begin

 NewWidth := MAX_BUBBLE_WIDTH;

 TextHeight := CalculateTextHeight(Canvas, FLabel.Caption, NewWidth - 2

* PADDING);

 NewHeight := TextHeight + 2 * PADDING;

 end;

 Width := NewWidth;

 Height := NewHeight;

end;

This way, if the text exceeds the maximum bubble width and wraps to a new line, the bubble

height will be adjusted correctly.

Now can you add some padding around the RoundRect as specified by a Padding property of

type TPadding

Certainly! The TPadding type, which is part of the VCL framework, allows you to specify

padding around controls. To utilize it for the TBubbleText component, we'll:

1. Introduce a Padding property of type TPadding.

2. Adjust the drawing of the RoundRect and the positioning of the Label based on the

values of the Padding property.

Here's the modified version of the code:

delphi

// ... [earlier code]

type

 TBubbleText = class(TCustomControl)

 private

 FLabel: TLabel;

 FBubbleType: TBubbleType;

 FPadding: TPadding;

 procedure SetText(const Value: string);

 function GetText: string;

 procedure SetBubbleType(const Value: TBubbleType);

 procedure SetPadding(const Value: TPadding);

 protected

 procedure Paint; override;

 procedure ResizeBubble;

 procedure Resize; override;

 public

 constructor Create(AOwner: TComponent); override;

 destructor Destroy; override;

 published

 property Text: string read GetText write SetText;

 property BubbleType: TBubbleType read FBubbleType write SetBubbleType

default btUser;

 property Padding: TPadding read FPadding write SetPadding;

 property Color;

 property Font;

 property Align;

 property Anchors;

 property Constraints;

 property Visible;

 end;

// ... [rest of the code]

{ TBubbleText }

constructor TBubbleText.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 Width := 150;

 Height := 50;

 FLabel := TLabel.Create(Self);

 FLabel.Parent := Self;

 FLabel.AutoSize := False;

 FLabel.WordWrap := True;

 FLabel.Align := alClient;

 FLabel.Layout := tlCenter;

 FLabel.Transparent := True;

 FBubbleType := btUser; // Default type

 FPadding := TPadding.Create(Self);

end;

destructor TBubbleText.Destroy;

begin

 FPadding.Free;

 FLabel.Free;

 inherited;

end;

procedure TBubbleText.Paint;

var

 Rect: TRectF;

begin

 inherited;

 Canvas.Pen.Color := Color;

 Canvas.Brush.Color := Color;

 case FBubbleType of

 btUser:

 begin

 Rect := RectF(FPadding.Left, FPadding.Top, Width * 0.75 -

FPadding.Right, Height - FPadding.Bottom);

 FLabel.SetBounds(FPadding.Left + 5, FPadding.Top, Trunc(Width *

0.75) - FPadding.Right - 10, Height - FPadding.Bottom);

 end;

 btOther:

 begin

 Rect := RectF(Width * 0.25 + FPadding.Left, FPadding.Top, Width -

FPadding.Right, Height - FPadding.Bottom);

 FLabel.SetBounds(Trunc(Width * 0.25) + FPadding.Left + 5,

FPadding.Top, Trunc(Width * 0.75) - FPadding.Right - 10, Height -

FPadding.Bottom);

 end;

 end;

 // Drawing the rounded rectangle as the bubble shape

 Canvas.RoundRect(Rect, 15, 15);

end;

procedure TBubbleText.SetPadding(const Value: TPadding);

begin

 FPadding.Assign(Value);

 ResizeBubble;

 Invalidate;

end;

// ... [rest of the code]

In this version, I've added the Padding property and made necessary adjustments in the

Paint method to consider the padding values for drawing the bubble and positioning the

label. Whenever the Padding property changes, it triggers a resize and repaint of the

component to reflect the changes.

Remember to use the Padding property in the ResizeBubble method as well to accurately

calculate the bubble size based on text and padding.

Can you make the color of the rect background settable as well as have a default background

based on whether it is a btUser or BtOther

Absolutely. You can achieve this by introducing a new BackgroundColor property and

setting default values based on the BubbleType.

1. Add a BackgroundColor property: This property will determine the color of the

bubble.

2. Set defaults for btUser and btOther: For simplicity, let's set default colors as light

blue for btUser and light gray for btOther.

3. Adjust the Paint method: Make sure the Paint method uses the BackgroundColor

property for filling the bubble.

Here's how to incorporate these changes:

delphi

type

 TBubbleText = class(TCustomControl)

 private

 FLabel: TLabel;

 FBubbleType: TBubbleType;

 FBackgroundColor: TColor;

 FPadding: TPadding;

 procedure SetText(const Value: string);

 function GetText: string;

 procedure SetBubbleType(const Value: TBubbleType);

 procedure SetBackgroundColor(const Value: TColor);

 procedure SetPadding(const Value: TPadding);

 protected

 procedure Paint; override;

 procedure ResizeBubble;

 procedure Resize; override;

 public

 constructor Create(AOwner: TComponent); override;

 destructor Destroy; override;

 published

 property Text: string read GetText write SetText;

 property BubbleType: TBubbleType read FBubbleType write SetBubbleType

default btUser;

 property BackgroundColor: TColor read FBackgroundColor write

SetBackgroundColor;

 property Padding: TPadding read FPadding write SetPadding;

 property Font;

 property Align;

 property Anchors;

 property Constraints;

 property Visible;

 end;

{ TBubbleText }

constructor TBubbleText.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 Width := 150;

 Height := 50;

 FLabel := TLabel.Create(Self);

 FLabel.Parent := Self;

 FLabel.AutoSize := False;

 FLabel.WordWrap := True;

 FLabel.Align := alClient;

 FLabel.Layout := tlCenter;

 FLabel.Transparent := True;

 FBubbleType := btUser; // Default type

 // Default background color based on BubbleType

 if FBubbleType = btUser then

 FBackgroundColor := clSkyBlue

 else

 FBackgroundColor := clSilver;

 FPadding := TPadding.Create(Self);

end;

// ... [rest of the code]

procedure TBubbleText.Paint;

var

 Rect: TRectF;

begin

 inherited;

 Canvas.Pen.Color := FBackgroundColor;

 Canvas.Brush.Color := FBackgroundColor;

 // ... [rest of the code for drawing based on BubbleType]

end;

procedure TBubbleText.SetBubbleType(const Value: TBubbleType);

begin

 if FBubbleType <> Value then

 begin

 FBubbleType := Value;

 // Set the default colors based on the BubbleType

 if FBubbleType = btUser then

 BackgroundColor := clSkyBlue

 else

 BackgroundColor := clSilver;

 end;

end;

procedure TBubbleText.SetBackgroundColor(const Value: TColor);

begin

 if FBackgroundColor <> Value then

 begin

 FBackgroundColor := Value;

 Invalidate; // Redraw when the color changes

 end;

end;

// ... [rest of the code]

With these changes, the bubble background color is set by the BackgroundColor property.

When the BubbleType changes, the background color defaults to a specific color, but you can

still customize it by setting the BackgroundColor property explicitly.

Can you make the text selectable?

Making text selectable inside a custom component requires a different approach. The built-in

TLabel doesn't support text selection. Instead, we can use a TMemo or a TRichEdit to display

the text and allow selection. Both controls can be made borderless and read-only, allowing

them to visually function similarly to TLabel but with selectable text.

I'll guide you on how to implement this with TRichEdit, which also gives you more

formatting options if you want to expand functionality in the future.

Here's how you can modify the TBubbleText component to use a TRichEdit:

delphi

uses

 ..., RichEdit, ...

type

 TBubbleText = class(TCustomControl)

 private

 FEdit: TRichEdit; // Using TRichEdit instead of TLabel

 FBubbleType: TBubbleType;

 FBackgroundColor: TColor;

 FPadding: TPadding;

 procedure SetText(const Value: string);

 function GetText: string;

 // ... rest of the declarations

 end;

{ TBubbleText }

constructor TBubbleText.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 Width := 150;

 Height := 50;

 FEdit := TRichEdit.Create(Self);

 FEdit.Parent := Self;

 FEdit.ReadOnly := True; // Ensure text is read-only

 FEdit.ScrollBars := ssNone; // Hide scrollbars

 FEdit.BorderStyle := bsNone; // Remove the border to make it look like a

TLabel

 FEdit.WordWrap := True;

 // ... rest of the constructor

end;

function TBubbleText.GetText: string;

begin

 Result := FEdit.Text;

end;

procedure TBubbleText.SetText(const Value: string);

begin

 FEdit.Text := Value;

 ResizeBubble;

end;

// ... rest of the code

You'll also need to adjust the positioning of the TRichEdit control in the Paint method and

possibly the ResizeBubble method, similar to how you handled the TLabel.

With this approach, the text inside the bubble will be selectable, and you can even allow

copying to the clipboard if desired.

Here is the sample output using the richedit. The background color doesn't come through

properly and it loses the rounded edges of the rectangle

I see. The TRichEdit has its own way of drawing content which may override our custom

drawing. This means the background color and the rounded edges you set for the custom

control might not be reflected in the TRichEdit itself.

To overcome this issue, we need to set the TRichEdit to be transparent and let the custom

control handle the painting. This way, the custom control will handle the drawing of the

background and the rounded edges, while the TRichEdit will only handle the text.

Here's what you can do:

1. Set TRichEdit to be transparent: You can achieve this by setting its Transparent

property to True.

2. Resize and reposition the TRichEdit: You should also resize and reposition the

TRichEdit to be within the bounds of the custom control's rounded rectangle,

considering the padding.

3. Custom draw the background and rounded edges: In the custom control's Paint

method, you should handle the drawing of the background and the rounded edges.

Here's a code outline on how to modify the TBubbleText class:

delphi

constructor TBubbleText.Create(AOwner: TComponent);

begin

 // ... your existing initialization code ...

 FEdit := TRichEdit.Create(Self);

 FEdit.Parent := Self;

 FEdit.Transparent := True; // Make it transparent

 FEdit.ReadOnly := True;

 FEdit.ScrollBars := ssNone;

 FEdit.BorderStyle := bsNone;

 FEdit.WordWrap := True;

 // ...

end;

procedure TBubbleText.ResizeBubble;

var

 TxtWidth, TxtHeight: Integer;

begin

 // ... existing code ...

 // Adjust the position and size of TRichEdit to fit within the rounded

rectangle

 FEdit.Left := FPadding.Left;

 FEdit.Top := FPadding.Top;

 FEdit.Width := TxtWidth - FPadding.Left - FPadding.Right;

 FEdit.Height := TxtHeight - FPadding.Top - FPadding.Bottom;

end;

procedure TBubbleText.Paint;

var

 Rect: TRectF;

begin

 Canvas.Pen.Color := FBackgroundColor;

 Canvas.Brush.Color := FBackgroundColor;

 // Draw the rounded rectangle considering the padding

 Rect := RectF(FPadding.Left, FPadding.Top, Self.Width - FPadding.Right,

Self.Height - FPadding.Bottom);

 // Adjust position for left or right alignment

 if FBubbleType = btOther then

 OffsetRect(Rect, Self.Width - TxtWidth - (2 * FPadding.Right), 0)

 else

 OffsetRect(Rect, FPadding.Left, 0);

 Canvas.RoundRect(Rect, 10, 10);

 // Since TRichEdit is transparent, it will show the rounded rectangle

beneath it.

end;

With these changes, the TRichEdit will show the text within the boundaries of the rounded

rectangle drawn by the custom control, giving the desired appearance.

